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The perturbation expansion formulated for a system of nonspherical and nonpolar molecules 
was employed for determining excess thermodynamic functions of binary solutions. Molecular 
interactions were described by a core square-well pair potential; the system of hard convex 
bodies was used as the reference. Thermodynamic functions of the reference system were cal-
culated from an improved version of the scaled particle (SPT) equation of state; the dependence 
of the averaged correlation function on distance was approximated by a simple relation which 
represents well the principal descending part of this curve. Its value at contact was also determined 
from improved SPT expressions. 

Perturbation theories of fluids constitute presently a proper tool for the description 
of one- and multicomponent systems of simple liquids. Recently1 '2 we have formu-
lated a perturbation expansion which may be used for the description of equilibrium 
behaviour of systems formed by nonpolar and nonspherical molecules interacting 
via a Kihara-type pair potential3 (which depends only on the shortest distance 
between surfaces of two hard convex cores of the interacting molecules). 

For Kihara-type pair potentials, the system of hard convex bodies (corresponding 
with the given type of molecules) represents a natural choice for the reference system; 
for such a system, however, only the equation of state and the averaged value of the 
correlation function gav at contact have been found. In view of this limited knowledge 
of the course of gay, the molecular interactions were interpreted in our earlier work2 

in terms of an extremely simplified model of the pair potential, namely through the 
core square-well potential with a very narrow well, so that the particle distribution 
may be described for this range by the value of the correlation function at contact. 

THEORETICAL 

Here, the course of the averaged correlation function is approximated for all distances 
Q > 0 ((? is the shortest distance between surfaces of two convex bodies); this fact 

• allows one to describe the intermolecular interactions by the common core square-
-well potential with a finite width of the well, or possibly by other more realistic 
potentials. 
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We will use the core square-well potential in the form 

wij(@) = 0 0 f ° r Q < 0 

= — £ij 0 < Q < fifjj 

= 0 Q > fljj , 

M 

with a{j being the characteristic distance which specifies the range of the attractive 
forces. 

The perturbation potential is then given by 

wf/g) = 0 for g < 0 

= W j j f e ) Q > 0 . (2) 

With our choice of the reference system and the perturbation, the first order pertur-
bation expansion of the free energy F assumes the form 

+ 
NkT NkT 2kT 

whereas for a mixture we can write 

n f00 

— (3) 
kT Jo 

F? n v-, 
+ X xixi 

NkT NkT 2 k T t j g-rio) ^ . w 

In these equations, superscript 0 denotes reference system functions and Sfi+e+} 

is the surface of a convex body formed by the centre of a hard convex particle j 
when moving with respect to a fixed particle i provided that the shortest distance be-
tween their surfaces is constant and equal to Q; N is the number of molecules in 
a system of volume V at temperature T, n is the number density and k Boltzmann's 
constant. 

As in this approximation the magnitude as well as shape of representative hard 
convex bodies does not depend on temperature, the function g°av is also tem-
perature-independent. It then follows from Eqs (3) and (4) that the configurational 
energy is given by the first order perturbation term in the free energy expansion, i.e. 

resp. 

U{ - U* = £/j - C/? = Fj - F? , 

Us - U* = F S - Fs° ; 

(5) 
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First-Order Perturbation Expansion 1267 

the entropy of the examined system is then equal to the reference system entropy 

S, - S® = 0 , Ss - S°s = 0 . (7), (8) 

Obviously it holds 

ASE = AS0E ; (9) 

the excess entropy of the examined system can be thus determined from the equation 
of state of reference hard convex bodies by employing the relation 

(S° - S*)lNk = - J n~1(P°lnkT - 1) dn, (10) 

and from a similar expression for the mixture. [The asterisk in Eqs (5) —(10) denotes 
functions of the ideal gas.] 

The compressibility factor of the system of hard convex bodies, P°lnkT, was calcu-
lated from a modified SPT equation, which has been derived recently4. For a one-com-
ponent system we can write 

P°lnkT = [1 + (3a - 2 ) y + (3a2 - 3a + 1) / - a 2y 3] / ( l - yf , (11) 

where y denotes the ratio of volumes of the convex body and the system, 

y = n f j = Ni^i/V, (12) 

and the parameter a, which measures the nonsphericity of the body, is given by the 
volume "V-^ surface and (1 /4tu) — multiple of the mean curvature integral 0tx 

of the convex body, 
a = m.^.fir., . (13) 

(For a sphere, a = 1 and Eq. (11) passes to the equation of state by Carnahan and 
Starling5.) 

Similarly, the pressure in a mixture of several sorts of hard convex bodies may be 
determined from the relation 

nkT (1 - v) n( 1 - v)2 9n( 1 - v)3 

with 

r = n j x i f i , q = nYjxi<%2
i, s = n j ] x i y i , v = nYjxi'Ti. (15)-(18) 

i i i i 
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The following expression for the excess entropy of the mixture is then obtained 
from Eqs ( 9 ) - ( 1 8 ) 

A S ^ f, n = y X; J i n — + 
Nk i ) V; 

j («f - l ) l n ( l - 3,,) - - l ) m (1 - r ) ] + 

+ [" 3«ivi rs 1 + r ocfyj 

L(1 - y,) n ( l - v ) j |_(l -

qs 

)2 9nv(l - v)2_ 
(19) 

For determining the first order perturbation term in the free energy expansion 
which is given by the integral from the product of the perturbation potential and the 
averaged correlation function, it will be useful to introduce a function h°(o) which 
is an analogue of the total correlation function for hard spheres; this function is defi-
ned by 

h°(a) = g ° - ( Q ) - l . ( 2 0 ) 

Because only contact values of the function h0(g), resp. #0av({?), are available for 
the system of hard convex bodies1 '2 '4, we were seeking for a simple and accurate 
approximation for the descending part of the curve h°(g) (for q > 0). The approxi-
mation 

h°(x) = A + B/x for 1 < x < xm 

= 0 x > xm (21) 

<rtp» 

f / 2 91 

FIG. 1 
Comparison of the Approximate Course of 
the Radial Distribution Function g°(x) and 
the Averaged Correlation Function g0av(Q) 
with Pseudoexperimental Data 

a a = 1; O y = 0-419, ® y = 0 314, 9 
y= 0-157; 6 a — 1-5; o y 0-4. 
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with xm = 1 + l /#°( l ) has proved to be satisfactory for the hard sphere system; 
A and B may be determined from the contact value of the radial distribution function 
(e.g. from the Carnahan-Starling equation of state) and from the condition h°(xm) = 
= 0. The approximate course of the function g°(x) for hard spheres at three different 
densities is compared on Fig. la with pseudoexperimental data; good agreement at 
all densities is obvious from this comparison. 

Analogously, the following approximation for the function h°(g) was used for 
hard convex bodies 

h°i}(Q) = Aij + Bij(yi+j + 4nQ<%i+])l<?i+e+j f o r 0 < q < bl} (22) 

= 0 for g > bjj , 

where 

bV) = ^ i + K a v ( 0 ) (23) 

and for A;j and B;j it holds 

Au = [ l - 4 a v ( ° ) ] ( ^ i + i + 47t^ i + jfc i j)/(47t^ i+jfo i j + 4nb*) , (24) 

Bii = []^?jav(0) - 1] (yl+J + 8i&l+Jbu + 4nb?j)/(4n&i+jbij + 4nbfj). (25) 

The course of the function g0ay(g) approximated by relation (22) is compared on 
Fig. lb with preliminary results of our Monte-Carlo study on the behaviour of hard 
spherocylinders with the parameter a = 1-5 at y = 0-4. Obviously, the approximate 
g0av(g) values are in this rather extreme case higher than the pseudoexperimental ones. 
This higher difference is brought about by the inaccurate approxim ation of the averaged 
correlation function at contact resulting from the use of the modified SPT relation. 

On substituting the approximate expression for g0av(g) into the integral in Eq. (4) 
and taking into account relation (20), the first order perturbation term for the mixture 
is equal to 

<WS) n v
 r/%a,i rbl 

2-! XiXjSij 
NkT 2kT TTj 

yi+e+jdg + Ai} \ yi+e+idQ + 
_J 0 Jo 

+ B{j | U ( ^ i + j + 4;xgM i + ]) dg (26) 

and a similar expression might be obtained for a pure component. 
In the last equation the functionals Sfi+e+i and can be expressed through 

geometric functionals of individual convex bodies: 

= ( ^ + f j + + 8n(&i + fy)g + 4ng2 , (27) 
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=9tx + Q. (28) 

RESULTS AND DISCUSSION 

The proposed procedure was used for determining excess thermodynamic functions 
of four binary model systems whose molecules may be easily visualized as convex 
bodies: we have studied the systems N2 + Ar at 84K, 0 2 + Ar at 84K, N2 + 0 2 

at 77K and N2 + CH4 at 9IK. Molecules of the pure substances can be represented 
by convex bodies, whose core is a point in the case of argon, a line segment connecting 
centres of two atoms in the case of nitrogen and oxygen or a regular tetrahedron 
joining midpoints of CH bonds in the case of methane. The thickness of parallel 
convex bodies as well as the depth of the potential well was adjusted to fit the P-V-T 
behaviour of the given liquid. Simultaneously we have assumed that the parameter 

which determines the range of the attractive forces, is equal to 

au = 0-Mtl + l . (29) 

The employed values of the geometric functional of convex cores, 0t,c, and 
thickness of the parallel convex bodies and values of sjk are given in Table I. Geo-
metric functional of representative hard convex bodies were calculated according 
to the following relations 

= ^ c + Z, (30) 

= + 8;x0t£ + 4tt£2 , (31) 

r-x = r c + + 4tt^c£2 + frcf3 . (32) 

T A B L E I 

Geometric Functionals of Cores, Thickness of Parallel Convex Bodies (£) and Parameter ejk 
in the Interaction Potential 

Substance A A 2 "TA3 A (s/k), K " 1 

Ar 0-0 0 0 
N 2 0-273 0-0 
0 2 0-275 0-0 
CH 4 0-407 1-379 

0-0 1-743 63-86 
0-0 1-608 52-57 
0-0 1-515 67-27 
0-084 1-538 81-63 
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The thermodynamic properties of the mixture (for P -> 0) were computed on the 
assumption of validity of the following mixing rule 

««j = fesjj)0-5 • (33) 

In calculating the thermodynamic functions of a mixture at a given composition, 
the first step consisted in determining the volume Vs for P -*• 0 from the equation 

= ~ t £ = I + 4 ^ ? + j ( < 5 2 + <53/3) + 
nkT 2kT i . j 

+ (gV} - 1) + 49ij) + ti&i+Hfaifyij + 1) + n(dg.Jdn) . 

. g\.} + + 4gls) + 8 f c ^ - f l f j + gu + 1 fl/fi^j + l)2} (34) 

in which the symbol <5 stands for the ratio av j0t i +-y 

This computed volume of the mixture was then employed for determining the excess 
volume AF e and subsequently also ASE and AGE. A comparison between calculated 
excess thermodynamic functions of equimolar mixtures and experimental data6 

is in Table II. 
In conclusion it may be stated that the employed first order perturbation theory, 

the representation of intermolecular interactions by the core square-well potential 
and the simple approximation of the averaged correlation function lead to a quanti-

TABLE I I 

Comparison of Calculated and Experimental Values of Excess Thermodynamic Functions for 
Equimolar Mixtures 

System N2 + Ar 0 2 + Ar N2 + 0 2 N2 + CH4 

T, K 84 84 77 91 

AG®/J m o l - 1 44 5 93 136 

AGE
xp/J mo l " 1 34 37 42 141 

AHE/J m o l ~ 1 55 5 109 84 

AHFJJ m o P 1 50 60 44 -

AFE/ml m o l - 1 - 0 - 2 2 -0 -02 - 0 - 3 0 -0 -88 

AFe
E

xp/ml mol" 1 -0 -18 0-14 -0 -21 -0 -21 
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1272 Boublik 

tative description of systems containing nonpolar and nonspherical molecules. Agree-
ment between the calculated and direct experimental excess thermodynamic functions 
may be considered as adequate to the degree of the approximation used. 
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